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Specific heat anomalies associated with Cantor-set energy spectra
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Most physical models on quasicrystals, as well as the related experimental results, exhibit fractal energy
spectra. In order to have a deep insight on relevant thermodynamic implications of this feature, we have
performed analytical and high precision numerical calculations of the specific@E#fsand C2's associated
with successive hierarchical approximations=(1,2,3,. . . ) tobounded Cantor-set energy spedtanstructed
with sets of continuous intervals for thendedcase, and with discrete levels for thiscretecase. Instructive
anomalies are exhibited, namdly C®2"{(T) andCY's%(T) differ for all temperatures and finite (in particu-
lar, in units ofkg, C35(0)=0 whereasC?®"40)=1), but, through an interesting nonuniform convergence,
chanqTy=CdsYT)=C.(T) for all finite temperaturestii) in the T—0 limit, C..(T) exhibits aninfinite
number of small-amplitude oscillations symmetrically disposed precisely around the fractal dimensionality
di=In2/In3; more precisely, C,,(T)~C*(T), where C*(T)=C*(3T)=3;__.[3"Tcosh(1/4T)] 2
=1n2/In3+ asin 27in(bT)/IN3]+ (T) with a=1.27...X1072, b=1.97... ande(T)<5x10° 4 (V T) (T is
measured in units of the outermost width of the Cantoy; $it) in the T— o limit, C..(T)~1/8T2. In addition
to this, we comment on a possible connection of this type of systems with the recently introduced nonextensive
thermostatistics.S1063-651X97)51511-X

PACS numbegps): 05.20-y, 61.44.Br, 61.43.Hv, 65.48.g

Quasicrystals are being intensively studied, both theoretiA=1). We wish to calculate, in particularC23"4T)
cally [1,2] and experimentally3] (see[4] for a review. The  =Jim,_..C23"{T). For instance, in the case=1 we have
fact that they are in some sense midway betwdisiorder  the partition function[8] (by choosingkg=1; B=1/T)
(many of their physical lproperties exhibit an errat_|cI|ke ap'Z*{a”d(T):féd Eexp(— BE), hence the specific heat is given
pearancgand order (their definition, and construction, fol- by Ckl)and(-l—):1_[2Tsinh(1/2]—)]72; thus obtaining the well

lows pfurely detherg_inistich rgl?smakes them alttraclt_ive"ob- known expression of the Langevin paramagnet. Analogously
jects of research. Since their first experimental realizaion .~ - obtainCba"4T) [see Fig. 2a) for n=1,2,...10].

quasiperiodic GaAs-AlAs heterostructures 1985 by Mer-
lin and collaboratorg5], their interest has only increased;
more specifically, the molecular beam epitaxy technique ha; at, at high temperatures, they vanish proportionally 1.1/
produced and driven a multiplication of possible such struc- L’et us now focus on tr;discretecase The spectrum 'We
tures (Fibonacci, Thue-Morse, double-period sequencese;:ldoIot is indicated in Fig. (b). Forn=1 We have tWo Nnon-
other possibilities could be Cantor sets, prime numbers, etcdegenerate levels &=0 éndEz 1 for ,n=2 we have four
The behavior of a variety of partlcl_es and quasma_rﬂcleaevels att=0,1/3,2/3,1; and so on,forincree,lsing values of
(electrong 6], photons, plasmon-polaritons, magn¢@$ in The n—=1 ’ p’)artiiic;n funcion is  given by
quasicrystals has been and is currently being studied. Now, 4isc =1+ _ h CUISCTY = [ 2Tcosh(1/
there is a common feature which can be considered as t 2T)](—2)- _thus e(;(bpt;iﬁq theer\w/\(,:;,l knoévn(S)c;o[ttk C(;?]o(mal
basic signature of such structures, and thisfimetal energy ' g y y

spectrum These spectra tend, however, to be quite complex.S€€ Fig. &) forn=1,2,..,10]. ,
In order to enlighten the thermodynamic consequences of, We address now the general discrete case. The analytical

fractal energy spectra, we shall herein study the specific he&iScussion is simplified by considering the following energy
associated with one of the most simple among them, namel§Pectrum(expressed as a ternary expansion
the triadic Cantor setwhose fractal dimensiom; equals — 5 3
|n2/|n3) E= C1/3+ C2/3 + C3/3 + -, (1)
Let us c_on5|d(?r a scale invariant energy spe_:ctrum as Indl\7vhere the ternary coefficien{g,} can only take the values

cated in Fig. 1a); n=1 corresponds to a continuous spec- . )

: ) 0,2 (if the value 1 were also allowed we would obtain the
trum going from 0 toA; n=2 corresponds to a spectrum

. whole interval[0,1], rather than the Cantor 3efThe next
whose first and second branches_ go fror_n @8 and %/3 steps are simple; first we obtain the partition function
to A, respectively; and so on for increasingWe are inter-

We verify that, at low temperatures, the successive specific
heats oscillate around the fractal dimensihs-In2/In3, and

ested in thebandedspectrum specific he&t®®"? as a func- A o ¢ .
tion of the temperatur& (from now on measured in units of  Z3S¢T)= > eXF{ -B 2 _§+ o+ _“)
A: i.e., without loss of generality we shall from now on take €1,C2, - -+ £n=0.2 3 3 3"
n
= 1+exp — 2B8/39], 2
*Electronic address: tsallis@cat.cbpf.br kljl [ n AI3O] @

1063-651X/97/566)/49224)/$10.00 56 R4922 © 1997 The American Physical Society



56
(a) (b)
1 1 1 I 1 — L — 1 —
8/9 8/9 —
7/9 7/9 —
2/3 2/3I 2/3 —  g/9 —
1/3 1/3) 13 — 1/3 —
2/9 2/9 —
179 179 —
° 0 0 | o— o0 — o0 —
n=1 n=2 n=3 n=1 n=2 n=3
( banded ; inbound ) ( discrete ; inbound )
9 | (c) (d)
8 3 I
7 | 8/3
[} 7/3|
2
3 3
2| 2| 1 1 I
1 1 1 2/3
ol ol 0 | 1/3|
n=1 n=2 n=3 0 . 0 )
n= n=
( banded ; outbound ) ( banded ; complete )

FIG. 1. Energy spectrén units of A>0): (a) banded, inbound;
(b) discrete, inbound(c) banded, outboundd) banded, complete.
The triadic Cantor set emerges at ties>o limit.

hence,

CR™(T)= 2, [3Teosh1/3T)] 2. 3)

It is interesting to notice that the specific heat has decouplelyere

into a superposition ofi Schottky anomalies each one cor-
responding to each one of theealesof the fractal. As a
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mode) or that of Fig. 1d) (complete modgl It is then clear
that, in theT—0 limit, C!"P°U"YT) ~ cCOmPIeR Ty =C* (T),

and that, in theT—oo limit, CoUPOUN{T)~CComPlelqT),
Moreover, we have thatC*(T)=3;__.[3*Tcosh(l/
3T)] 2. We verify an important scale property, namely that
C*(3T)=C*(T) (V T). The last step consists of replacing
the sum by an integral plus corrections, the corrections being
given by the so called Poisson’'s formula
S _Lf(K) =2 _..J~ .. f(x)exp(2rikx)dx. Therefore,

o

exp(2mikx)
X
~=[3*Tcosh 1/3*T)]?

Akcos<

2kIinT
In3
Z

&) {2

Equation(4) can be rewritten in a more compact way,

>

=—o

C*(T)=k

In2 2

“n3 i3 g‘l In3

27Tk|nT)

, 4

— Bksin<
where

2wkinz
) z (5)

In3

n2 27kIn(byT)
i In2 .
C*(T) in3 +k21 a,sin 3 } (6)
a=a;=(2/In3)(A2+B)¥?=1.27.. X102 and
b=b,=exp{(In3/27)[ =w—arctanf,/B,)[}=1.97 .... The

k=0 term has produced the fractal dimensi¢average”

matter of fact, it can be shown that this model is equivalen¥@lu®; the coefficientga,} and{b,;} are easily expressed in

to a system oh noninteracting spinss-in the presence of a

terms of the above integrals. Then, it is observed that the first

nonuniform external field. Since the spectrum is bounded, ifW0 terms k=0 and k=1) are sufficient to reproduce

the limit T—o, the specific heat must decay &s?, in fact
CUs(T)~ 1[4+ & +---]= 1/8T2. Let us now connect the
results associated with the discrete spect{lﬁh with those
associated with the discrete spectr{ifi}. A straightforward
disc—11+exp(-B/3")12%°. In the large

inspection yield<Z, ;=
n limit, we obtainzd's¢~ 2 79S¢ which corresponds to the

C*(T) extraordinarily well; we numerically checked that
further corrections are about 2000 times smaller in amplitude
(and consist of double frequency and higher harmonic oscil-
lationg. C* (T) is presented in Fig.(@).

In order to qualify in what sense; is an average, let us
notice thatC* (T) is a periodic function of Ifi. Consistently,
[f3TC*(T)dT' /T’ Y[ f37dT'/T'] independs fronT, and it

fact that every band is associated, in the discrete case, wilh €asily verified that it equals In2/In3. At this point it is

one state of theE spectrum, instead dfvo states in theE
spectrum. Consequently, we have t@3fs°=cdisc,

We can now compare the results for the banded and di
crete spectra. Since the energy bands become vanishin
narrow for n—oe, it is obvious that, althoughC22"{T)
#CYSYT) for all finite n [e.g., CP3"%0)=1 whereas
cdisq0)=0], CPAYT)=CUYT)=C.(T) for all finite
temperature$see in Fig. £c) our results fom= 10, banded
and discrete casésMore precisely, it can be easily estab-
lished that ZPa"%=(1/8)tanHp/(2x3""1)]z4¢, hence
Cgand: Ciisc_

interesting to remark that this result can be interpreted as an

“equipartition” principle. In general, a constant value of the

specific healC=1 is associated to the fact that the average
ensity of states scales with energyEs . In our case it

¥in be verified that the density scalesEds ! (see Fig. 3.

This implies that the average specific heaCjg=d; . In this

sense, the equipartition principle is preserved.

In the context of oscillatory behavior of thermodynamical
quantities we point out that similar phenomena have already
been observed. For instance, Meuriteal.[9], in agreement
with a previous discussigri0], have reported oscillations in
“extrapolated slopes” in Dyson’s hierarchical model. Let us

Let us now address two modified energy spectra for tha&lso mention that Petri and Ruockdl] found an expression
present problem, say in its banded version. Instead of usinghich is structurally similar to Eq(3) when studying the

the spectrum of Fig. (&) (from now on referred to as the
inbound modeg| we can use that of Fig.(4) (outbound

vibrational specific heat of a one-dimensional hierarchical
model. However, those authors were mainly concerned with
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mean values and did not discuss the small amplitude oscilla-
tions that can be observed in their results. An interesting
contribution of the present paper is to reveal a transparent o . ) . ! , 1
connection between the scale invariance of the energy spec —
trum and the oscillations of the specific heat as a function of N
temperature. -

The model we have studied suggests that the fractal struc o~
ture of a spectrum reflects itself in the specific heat in two
ways. The average behavior is associated with a fractal di-
mension; there are oscillationaround this average value
whose number is related to the hierarchical depth. So, ever .
for afinite hierarchy these features could be experimentally I - - B
observed. In fact, since the effect can appear at arbitrary ’
temperatures, it is quite plausible that similar phenomena
would generically exist for bosonic and fermionic systems. )
In other words, oscillations in thermodynamical functions as D - ) . R
a function of temperature would appear as a manifestation of
the hierarchical organization of the energy spectrum.

Before concluding, let us comment on a possible connec-
tion of the present calculation with the recently introduced ©
nonextensive thermostatistic§12]. This statistics is ' % 4 L 0
based on a generalized entropic form, namely In-E
Sq=(1-2ip)/(q—1),qeR (hence, S;=—Z=pjinp;, the 3
standard entropy The nonextensivity of this form can be i, 3. Integrated density of staté (normalized to unity vs
seen from the fact that, iA and B are two independent energy. The full line corresponds to the discrete Cantor spectrum of
systems(in the sense that the probabilities associated witheq. (1) with n=12. The dashed line is given bg%, with

A+B factorize into those of A and B), then d;=In2/In3, hence the density of states behaves approximately as
Sy(A+B)=Sy(A) +Sy(B) + (1— ) Sq(A)Sy(B); we imme-  E% 1,
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diately verify that, sinces, is non-negativeq=1,q<1, and able in the literatur¢15], and forq<1 it does present oscil-
g>1, respectively, correspond to the extensive, superextedations the amplitude of the oscillations decreases when
sive, and subextensive cases. This formalism has receivapproaches 1 from below, and they can be as small as the
applications in a variety of situationgl3] such as self- present ones ifq is sufficiently close to 1; in fact,
gravitating systems, two-dimensional-like turbulence ian(T)/Tl‘q is an oscillatory function of, in a similar way
pure-electron plasma, nonlinear maps, vidike and  C*(T) is a periodic function of Ifl. Second, Bellissaret al.
correlated-like anomalous diffusions, the solar neutrino probf2] have, in some cases, connected quasicrystalline structures
lem, peculiar velocity distribution of galaxy clusters, cosmol-with a zeroLiapunov exponenthis is kind of intuitive since
ogy, linear response theory, long-range fluid and magnetiéully ordered and fully disordered structures would naturally
systems, optimization techniques, among others. Alemanfit with negative and positive Liapunov exponents, respec-
[14] has recently suggested that this formalism could be contively); a similar connection exisfs 6] whenq#1.

nected to systems with fractally structured Boltzmann-Gibbs

probability distributions. Although on the basis of our We gratefully acknowledge P. A. Alemany for communi-
present calculation does not appear a transparent connectioating to us his preprint prior to publication. We are also
along Alemany’s lines, it is worthy mentioning a couple of indebted to E. L. Albuquerque, A. R. Plastino, E. K. Lenzi,
intriguing features. First, the generalized specific &dfT) and C. Anteneodo for fruitful suggestions and discussions,
of the quantum one-dimensional harmonic oscillator is availand to CNPQ for financial support.
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