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Specific heat anomalies associated with Cantor-set energy spectra
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Most physical models on quasicrystals, as well as the related experimental results, exhibit fractal energy
spectra. In order to have a deep insight on relevant thermodynamic implications of this feature, we have
performed analytical and high precision numerical calculations of the specific heatsCn

band andCn
disc associated

with successive hierarchical approximations (n51,2,3,. . . ) tobounded Cantor-set energy spectra~constructed
with sets of continuous intervals for thebandedcase, and with discrete levels for thediscretecase!. Instructive
anomalies are exhibited, namely~i! Cn

band(T) andCn
disc(T) differ for all temperatures and finiten ~in particu-

lar, in units ofkB , Cn
disc(0)50 whereasCn

band(0)51), but, through an interesting nonuniform convergence,
C`

band(T)5C`
disc(T)[C`(T) for all finite temperatures;~ii ! in the T→0 limit, C`(T) exhibits aninfinite

number of small-amplitude oscillations symmetrically disposed precisely around the fractal dimensionality
df5 ln2/ln3; more precisely, C`(T);C* (T), where C* (T)5C* (3T)5(k52`

` @3kTcosh(1/3kT)#22

5 ln2/ln31asin@2pln(bT)/ln3#1e(T) with a51.27 . . .31022, b51.97 . . . ande(T),531024 (; T) (T is
measured in units of the outermost width of the Cantor set!; ~iii ! in theT→` limit , C`(T);1/8T2. In addition
to this, we comment on a possible connection of this type of systems with the recently introduced nonextensive
thermostatistics.@S1063-651X~97!51511-X#

PACS number~s!: 05.20.2y, 61.44.Br, 61.43.Hv, 65.40.1g
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Quasicrystals are being intensively studied, both theor
cally @1,2# and experimentally@3# ~see@4# for a review!. The
fact that they are in some sense midway betweendisorder
~many of their physical properties exhibit an erraticlike a
pearance! and order ~their definition, and construction, fol
lows purely deterministic rules! makes them attractive ob
jects of research. Since their first experimental realization~in
quasiperiodic GaAs-AlAs heterostructures! in 1985 by Mer-
lin and collaborators@5#, their interest has only increase
more specifically, the molecular beam epitaxy technique
produced and driven a multiplication of possible such str
tures ~Fibonacci, Thue-Morse, double-period sequenc
other possibilities could be Cantor sets, prime numbers, e!.
The behavior of a variety of particles and quasipartic
~electrons@6#, photons, plasmon-polaritons, magnons@7#! in
quasicrystals has been and is currently being studied. N
there is a common feature which can be considered as
basic signature of such structures, and this is afractal energy
spectrum. These spectra tend, however, to be quite comp
In order to enlighten the thermodynamic consequences
fractal energy spectra, we shall herein study the specific
associated with one of the most simple among them, nam
the triadic Cantor set~whose fractal dimensiondf equals
ln2/ln3).

Let us consider a scale invariant energy spectrum as i
cated in Fig. 1~a!; n51 corresponds to a continuous spe
trum going from 0 toD; n52 corresponds to a spectru
whose first and second branches go from 0 toD/3 and 2D/3
to D, respectively; and so on for increasingn. We are inter-
ested in thebanded-spectrum specific heatCn

band as a func-
tion of the temperatureT ~from now on measured in units o
D; i.e., without loss of generality we shall from now on ta
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D51). We wish to calculate, in particular,C`
band(T)

[ limn→`Cn
band(T). For instance, in the casen51 we have

the partition function@8# ~by choosing kB51; b[1/T)
Z1

band(T)5*0
1dEexp(2bE), hence the specific heat is give

by C1
band(T)512@2Tsinh(1/2T)#22; thus obtaining the well

known expression of the Langevin paramagnet. Analogou
we can obtainCn

band(T) @see Fig. 2~a! for n51,2, . . .,10].
We verify that, at low temperatures, the successive spe
heats oscillate around the fractal dimensiondf5 ln2/ln3, and
that, at high temperatures, they vanish proportionally to 1/T2.

Let us now focus on thediscretecase. The spectrum w
adopt is indicated in Fig. 1~b!. For n51, we have two non-
degenerate levels atE50 andE51; for n52, we have four
levels atE50,1/3,2/3,1; and so on for increasing values ofn.
The n51 partition function is given by
Z1

disc(T)511exp(2b) hence, C1
disc(T)5@2Tcosh(1/

2T)] 22; thus obtaining the well known Schottky anoma
@see Fig. 2~b! for n51,2, . . .,10].

We address now the general discrete case. The analy
discussion is simplified by considering the following ener
spectrum~expressed as a ternary expansion!:

Ē5 c1/3 1 c2/32 1 c3/33 1•••, ~1!

where the ternary coefficients$ck% can only take the values
0,2 ~if the value 1 were also allowed we would obtain th
whole interval @0,1#, rather than the Cantor set!. The next
steps are simple; first we obtain the partition function

Z̄n
disc~T!5 (

c1 ,c2 , . . . ,cn50,2
expF2bS c1

3
1

c2

32
1 . . . 1

cn

3nD G
5)

k51

n

@11exp~2 2b/3k!#, ~2!
R4922 © 1997 The American Physical Society
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hence,

C̄n
disc~T!5 (

k51

n

@3kTcosh~1/3kT!#22 . ~3!

It is interesting to notice that the specific heat has decoup
into a superposition ofn Schottky anomalies each one co
responding to each one of thescalesof the fractal. As a
matter of fact, it can be shown that this model is equival
to a system ofn noninteracting spins–12 in the presence of a
nonuniform external field. Since the spectrum is bounded
the limit T→`, the specific heat must decay asT22, in fact

C̄`
disc(T); 1/T2 @ 1

91
1
811•••#5 1/8T2. Let us now connect the

results associated with the discrete spectrum$Ē% with those
associated with the discrete spectrum$E%. A straightforward
inspection yieldsZn11

disc5@11exp(2b/3n)# Z̄n
disc . In the large

n limit, we obtainZn11
disc; 2 Z̄n

disc , which corresponds to the
fact that every band is associated, in the discrete case,
one state of theĒ spectrum, instead oftwo states in theE
spectrum. Consequently, we have thatC`

disc5C̄`
disc .

We can now compare the results for the banded and
crete spectra. Since the energy bands become vanish
narrow for n→`, it is obvious that, althoughCn

band(T)
ÞCn

disc(T) for all finite n @e.g., Cn
band(0)51 whereas

Cn
disc(0)50], C`

band(T)5C`
disc(T)[C`(T) for all finite

temperatures@see in Fig. 2~c! our results forn510, banded
and discrete cases#. More precisely, it can be easily esta
lished that Zn

band5(1/b)tanh@b/(233n21)#Zn
disc, hence

C`
band5C`

disc .
Let us now address two modified energy spectra for

present problem, say in its banded version. Instead of u
the spectrum of Fig. 1~a! ~from now on referred to as th
inbound model!, we can use that of Fig. 1~c! ~outbound

FIG. 1. Energy spectra~in units ofD.0): ~a! banded, inbound;
~b! discrete, inbound;~c! banded, outbound;~d! banded, complete
The triadic Cantor set emerges at then→` limit.
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model! or that of Fig. 1~d! ~complete model!. It is then clear
that, in theT→0 limit, C`

inbound(T);C`
complete(T)[C* (T),

and that, in theT→` limit, C`
outbound(T);C`

complete(T).
Moreover, we have that C* (T)5(k52`

` @3kTcosh(1/
3kT)] 22. We verify an important scale property, namely th
C* (3T)5C* (T) (; T). The last step consists of replacin
the sum by an integral plus corrections, the corrections be
given by the so called Poisson’s formu
(k52`

` f (k)5(k52`
` *2`

` f (x)exp(2pikx)dx. Therefore,

C* ~T!5 (
k52`

` E
2`

` exp~2p ikx!

@3xTcosh~1/3xT!#2
dx

5
ln2

ln3
1

2

ln3 (
k51

` FAkcosS 2pklnT

ln3 D
2BksinS 2pklnT

ln3 D G , ~4!

where

H Ak

BkJ [E
0

` z

cosh2z
3H cos

sinJ S 2pklnz

ln3 Ddz. ~5!

Equation~4! can be rewritten in a more compact way,

C* ~T!5
ln2

ln3
1 (

k51

`

aksinF2pkln~bkT!

ln3 G , ~6!

where a[a15(2/ln3)(A1
21B1

2)1/251.27 . . .31022 and
b[b15exp$(ln3/2p)@p2arctan(A1 /B1)#%51.97 . . . . The
k50 term has produced the fractal dimension~‘‘average’’
value!; the coefficients$ak% and$bk% are easily expressed i
terms of the above integrals. Then, it is observed that the
two terms (k50 and k51) are sufficient to reproduce
C* (T) extraordinarily well; we numerically checked tha
further corrections are about 2000 times smaller in amplitu
~and consist of double frequency and higher harmonic os
lations!. C* (T) is presented in Fig. 2~d!.

In order to qualify in what sensedf is an average, let us
notice thatC* (T) is a periodic function of lnT. Consistently,
@*T

3TC* (T8)dT8/T8#/@*T
3T dT8/T8# independs fromT, and it

is easily verified that it equals ln2/ln3. At this point it i
interesting to remark that this result can be interpreted as
‘‘equipartition’’ principle. In general, a constant value of th
specific heatC5 l is associated to the fact that the avera
density of states scales with energy asEl 21. In our case it
can be verified that the density scales asEdf21 ~see Fig. 3!.
This implies that the average specific heat isCav5df . In this
sense, the equipartition principle is preserved.

In the context of oscillatory behavior of thermodynamic
quantities we point out that similar phenomena have alre
been observed. For instance, Meuriceet al. @9#, in agreement
with a previous discussion@10#, have reported oscillations in
‘‘extrapolated slopes’’ in Dyson’s hierarchical model. Let u
also mention that Petri and Ruocco@11# found an expression
which is structurally similar to Eq.~3! when studying the
vibrational specific heat of a one-dimensional hierarchi
model. However, those authors were mainly concerned w
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FIG. 2. Specific heat~in units
of kB) vs temperature~in units of
D.0) of the ~a! banded, inbound
(n51,2, . . .,10); ~b! discrete, in-
bound (n51,2, . . .,10); ~c!
banded and discrete, inboun
(n510); ~d! banded and discrete
complete (n→`). In all cases the
fractal dimension df5 ln2/ln3
50.630 . . . is indicated.
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mean values and did not discuss the small amplitude osc
tions that can be observed in their results. An interest
contribution of the present paper is to reveal a transpa
connection between the scale invariance of the energy s
trum and the oscillations of the specific heat as a function
temperature.

The model we have studied suggests that the fractal st
ture of a spectrum reflects itself in the specific heat in t
ways. The average behavior is associated with a fracta
mension; there are oscillations~around this average value!
whose number is related to the hierarchical depth. So, e
for a finite hierarchy these features could be experimenta
observed. In fact, since the effect can appear at arbit
temperatures, it is quite plausible that similar phenom
would generically exist for bosonic and fermionic system
In other words, oscillations in thermodynamical functions
a function of temperature would appear as a manifestatio
the hierarchical organization of the energy spectrum.

Before concluding, let us comment on a possible conn
tion of the present calculation with the recently introduc
nonextensive thermostatistics@12#. This statistics is
based on a generalized entropic form, nam
Sq[ (12( i pi

q)/(q21), qPR ~hence,S152( i pi lnpi , the
standard entropy!. The nonextensivity of this form can b
seen from the fact that, ifA and B are two independen
systems~in the sense that the probabilities associated w
A1B factorize into those of A and B), then
Sq(A1B)5Sq(A)1Sq(B)1(12q)Sq(A)Sq(B); we imme-
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FIG. 3. Integrated density of statesN ~normalized to unity! vs
energy. The full line corresponds to the discrete Cantor spectrum
Eq. ~1! with n512. The dashed line is given byEdf, with
df5 ln2/ln3, hence the density of states behaves approximatel
Edf21.
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diately verify that, sinceSq is non-negative,q51, q,1, and
q.1, respectively, correspond to the extensive, superex
sive, and subextensive cases. This formalism has rece
applications in a variety of situations@13# such as self-
gravitating systems, two-dimensional-like turbulence
pure-electron plasma, nonlinear maps, Le´vy-like and
correlated-like anomalous diffusions, the solar neutrino pr
lem, peculiar velocity distribution of galaxy clusters, cosm
ogy, linear response theory, long-range fluid and magn
systems, optimization techniques, among others. Alem
@14# has recently suggested that this formalism could be c
nected to systems with fractally structured Boltzmann-Gib
probability distributions. Although on the basis of o
present calculation does not appear a transparent conne
along Alemany’s lines, it is worthy mentioning a couple
intriguing features. First, the generalized specific heatCq(T)
of the quantum one-dimensional harmonic oscillator is av
tt
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able in the literature@15#, and forq,1 it does present oscil-
lations; the amplitude of the oscillations decreases whenq
approaches 1 from below, and they can be as small as
present ones ifq is sufficiently close to 1; in fact,
Cq(T)/T12q is an oscillatory function ofT, in a similar way
C* (T) is a periodic function of lnT. Second, Bellissardet al.
@2# have, in some cases, connected quasicrystalline struc
with a zeroLiapunov exponent~this is kind of intuitive since
fully ordered and fully disordered structures would natura
fit with negative and positive Liapunov exponents, resp
tively!; a similar connection exists@16# whenqÞ1.
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